login
A225083
Non-Pillai primes: primes p such that for all m such either p is 1 mod m or m!+1 is not 0 mod p.
1
2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 53, 73, 89, 97, 101, 103, 107, 113, 127, 131, 151, 157, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 229, 241, 263, 281, 283, 313, 331, 337, 347, 349, 353, 367, 373, 409, 421, 433, 439, 443, 457, 487, 491, 509, 523, 541, 547, 587, 617
OFFSET
1,1
COMMENTS
Complement of A063980 in the primes.
Sophie Germain primes in this sequence: 2, 5, 11, 41, 53, 89, 113, 131, 173, 179, 191, 281, 443, 491, 509, 641, 653, 659, 743, 761, 911, 1013, 1049, 1103, 1223, 1409, 1439, 1451, 1481, 1583, 1733, 1901, 1931, 1973, 2003,2129, 2141, 2459, 2693, 2741, 2939, 3023, 3299,...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
PROG
(PARI) is(p)=my(t=Mod(5040, p)); for(m=8, p-2, t*=m; if(t==-1 && p%m!=1, return(0))); isprime(p) \\ Charles R Greathouse IV, Mar 18 2014
CROSSREFS
Sequence in context: A117843 A293667 A068192 * A002200 A181561 A216496
KEYWORD
nonn
AUTHOR
Irina Gerasimova, Apr 27 2013
EXTENSIONS
New name from Charles R Greathouse IV, Mar 18 2014
STATUS
approved