login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225042 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1), H=(1,0) and S=(0,1). 6
1, 2, 8, 48, 360, 3088, 28928, 288208, 3003952, 32402384, 359019952, 4064452272, 46829600704, 547498996736, 6480275672192, 77511461858592, 935562094075392, 11381614588917296, 139425068741674448, 1718444636265140992, 21295889048851102176, 265200380258393530896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..890

FORMULA

a(n) ~ c * d^n / n^(3/2), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.56165398271839628518..., c = 0.03237684690282108810066870410351693504744... . - Vaclav Kotesovec, Sep 07 2014

EXAMPLE

a(0) = 1: the empty path.

a(1) = 2: U, HS.

a(2) = 8: UU, HSU, UHS, HSHS, HUS, HHSS, UDSS, HSDSS.

MAPLE

b:= proc(x, y) option remember; `if`(y>x, 0, `if`(x=0, 1,

       b(x-1, y)+`if`(y>0, b(x-1, y-1)+b(x, y-1), 0)+b(x-1, y+1)))

    end:

a:= n-> b(n, n):

seq(a(n), n=0..25);

MATHEMATICA

b[x_, y_] := b[x, y] = If[y > x, 0, If[x == 0, 1, b[x - 1, y] + If[y > 0, b[x - 1, y - 1] + b[x, y - 1], 0] + b[x - 1, y + 1]]];

a[n_] := b[n, n];

Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

CROSSREFS

Cf. A006318 (without D-steps), A224769 (without H-steps), A224776 (without U-steps), A225041 (paths to (n,0)), A286765.

Sequence in context: A085615 A054726 A003576 * A095989 A177388 A211196

Adjacent sequences:  A225039 A225040 A225041 * A225043 A225044 A225045

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 25 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 21:53 EST 2018. Contains 299387 sequences. (Running on oeis4.)