|
|
A225015
|
|
Number of sawtooth patterns of length 1 in all Dyck paths of semilength n.
|
|
2
|
|
|
0, 1, 1, 5, 18, 66, 245, 918, 3465, 13156, 50193, 192270, 739024, 2848860, 11009778, 42642460, 165480975, 643281480, 2504501625, 9764299710, 38115568260, 148955040300, 582714871830, 2281745337300, 8942420595810, 35074414899576, 137672461877850, 540756483094828
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
A sawtooth pattern of length 1 is UD not followed by UD.
First differences of A024482.
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(0)=0, a(1)=1, a(n) = A024482(n) - A024482(n-1) for n >= 2.
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<4, [0, 1, 1, 5][n+1],
(n-1)*(3*n-4)*(4*n-10)*a(n-1)/(n*(n-2)*(3*n-7)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Apr 24 2013
|
|
MATHEMATICA
|
Join[{0, 0, 1}, Table[(Binomial[2n, n]-Binomial[2n-2, n-1])/2, {n, 2, 25}]] // Differences (* Jean-François Alcover, Nov 12 2020 *)
|
|
CROSSREFS
|
Cf. A024482, A097613.
Sequence in context: A184309 A051944 A153373 * A166677 A318062 A158879
Adjacent sequences: A225012 A225013 A225014 * A225016 A225017 A225018
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Scambler, Apr 23 2013
|
|
STATUS
|
approved
|
|
|
|