%I
%S 2,3,4,8,16,32,36,64,72,108,128,144,200,256,288,396,512,528,576,588,
%T 1024,1040,1152,1296,2000,2048,2304,2320,2400,2592,3888,4096,4160,
%U 4608,4752,4800,5184,5600,6552,7200,8192,8448,9216,9600,9936,10368,11316,12000
%N Numbers m for which Sum_{i=1..k} (p(i)/(p(i)1)) + Product_{i=1..k} (p(i)/(p(i)1)) is an integer, where p(i) are the k prime factors of m (with multiplicity).
%C Apart from 3 all terms are even.
%H Paolo P. Lava, <a href="/A224912/b224912.txt">Table of n, a(n) for n = 1..200</a>
%e Prime factors of 11316 are 2^2, 3, 23 and 41.
%e Sum_{i=1..5} (p(i)/(p(i)1)) = 2*(2/(21)) + 3/(31) + 23/(231) + 41/(411) = 3331/440.
%e Sroduct_{i=1..5} (p(i)/(p(i)1)) = 2*(2/(21)) * 3/(31) * 23/(231) * 41/(411) = 2829/440.
%e Their sum is an integer: 3331/440 + 2829/440 = 14.
%p with(numtheory);
%p A224912:=proc(i) local b,c,d,n,p;
%p for n from 2 to i do p:=ifactors(n)[2];
%p b:=add(op(2,d)*op(1,d)/(op(1,d)1),d=p)+mul((op(1,d)/(op(1,d)1))^op(2,d),d=p);
%p if trunc(b)=b then print(n); fi; od; end:
%p A224912(10^6);
%Y Cf. A199767, A198391.
%K nonn
%O 1,1
%A _Paolo P. Lava_, Apr 19 2013
