login
Surface area of Johnson square pyramid (rounded down) with all the edge-lengths equal to n.
2

%I #32 Sep 22 2024 02:29:14

%S 2,10,24,43,68,98,133,174,221,273,330,393,461,535,614,699,789,885,986,

%T 1092,1204,1322,1445,1573,1707,1846,1991,2141,2297,2458,2625,2797,

%U 2975,3158,3346,3540,3740,3945,4155,4371,4592,4819,5051,5289,5532,5781,6035,6294

%N Surface area of Johnson square pyramid (rounded down) with all the edge-lengths equal to n.

%C Johnson square pyramid: a square base with four equilateral triangular-faces. All the edge-lengths are equal.

%H K. D. Bajpai, <a href="/A224837/b224837.txt">Table of n, a(n) for n = 1..1000</a> [a(613), a(864) corrected by _Georg Fischer_]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Square_pyramid">Square pyramid</a>

%F a(n) = floor((1+sqrt(3))*n^2).

%e a(3) = 24: Surface area = (1+sqrt(3))*3^2 = 24.588... and floor(24.588...) = 24.

%p a:= n-> floor((1+sqrt(3))*n^2):

%p seq(a(n), n=1..48);

%t Table[Floor[(1+Sqrt[3])*k^2], {k, 500}]

%o (PARI) vector(500, k, floor((1+sqrt(3))*k^2))

%o (PARI) a(n)=n^2+sqrtint(3*n^4) \\ _Charles R Greathouse IV_, Sep 18 2013

%Y Cf. A090388, A228189.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Sep 18 2013