OFFSET
2,1
COMMENTS
This sequence is related to Morley's Congruence which states that, for prime p>2, (-1)^((p-1)/2)*binomial(p-1,(p-1)/2) == 4^(p-1) (mod p^3).
It of interest to note that this congruence can only be illustrated in Maple by using the right hand side of the identity a== b (mod m) iff m|(a-b). Checking for values of n^3 that divide ((-1)^((n-1)/2)*binomial(n-1,(n-1)/2) - 4^(n-1)) produces the sequence of primes. Encoding the left hand side produces this sequence.
a(n) == 1 (mod p)
MAPLE
p:= n-> ithprime(n): seq((-1)^((p(n)-1)/2)*binomial(p(n)-1, (p(n)-1)/2) mod p(n)^3, n=2..30)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Detlefs, Apr 18 2013
STATUS
approved