login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224788 E.g.f. satisfies: A(x) = exp( Integral A(x)/(1 - x*A(x)^2) dx ). 1
1, 1, 3, 18, 168, 2142, 34704, 682740, 15810372, 421339176, 12702393792, 427435993512, 15881634963216, 645804320863680, 28527455317884336, 1360332028008819360, 69645942884911181184, 3810436222004101378656, 221867131720533800409216, 13698420738298341356760768 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to: C(x) = exp( Integral C(x)^2/(1 - x*C(x)^2) dx ), which is satisfied by: C(x) = (1-sqrt(1-4*x))/(2*x) (Catalan numbers, A000108).

Compare to: W(x) = exp( Integral W(x)/(1 - x*W(x)) dx ), which is satisfied by: W(x) = LambertW(-x)/(-x)  =  Sum_{n>=0} (n+1)^(n-1)*x^n/n!.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..300

Eric Weisstein, MathWorld: Exponential Integral

FORMULA

E.g.f. derivative: A'(x) = A(x)^2 / (1-x*A(x)^2). - Vaclav Kotesovec, Feb 19 2014

a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * r^(n+1/4)), where r = 0.28396034297... is the root of the equation Ei(1/sqrt(r)) - Ei(1) + exp(1) = (r+sqrt(r)) * exp(1/sqrt(r)), where Ei is the Exponential Integral. - Vaclav Kotesovec, Feb 19 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 168*x^4/4! + 2142*x^5/5! +...

where

log(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 99*x^4/4! + 1236*x^5/5! + 19752*x^6/6! +...

A(x)/(1-x*A(x)^2) = 1 + 2*x + 11*x^2/2! + 99*x^3/3! + 1236*x^4/4! + 19752*x^5/5! +...

MATHEMATICA

a = ConstantArray[0, 21]; a[[1]]=1; a[[2]]=1; Do[a[[n+2]] = n!*Sum[a[[i+1]]*a[[n-i+1]]/i!/(n-i)!, {i, 0, n}] + n!*Sum[a[[j+1]]/(j-1)!*Sum[a[[i+1]]*a[[n-j-i+1]]/i!/(n-j-i)!, {i, 0, n}], {j, 1, n}], {n, 1, 18}]; a (* Vaclav Kotesovec, Feb 19 2014 *)

FindRoot[ExpIntegralEi[1/Sqrt[r]] - ExpIntegralEi[1] + E == (r+Sqrt[r]) * E^(1/Sqrt[r]), {r, 1/2}, WorkingPrecision->50] (* program for numerical value of the radius of convergence r, Vaclav Kotesovec, Feb 19 2014 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A/(1-x*A^2 +x*O(x^n))))); n!*polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A225052, A091725.

Sequence in context: A053513 A138211 A052668 * A121423 A074932 A101483

Adjacent sequences:  A224785 A224786 A224787 * A224789 A224790 A224791

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 28 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)