login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224733 a(n) = binomial(2*n,n)^n. 3
1, 2, 36, 8000, 24010000, 1016255020032, 622345892187672576, 5608296349498479967469568, 752711194884611945703392100000000, 1518219588672387021538193329290752000000000, 46343145866349732399475841723454160331675252923826176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A000984(n)^n, where A000984 is the central binomial coefficients.

LINKS

Table of n, a(n) for n=0..10.

FORMULA

Logarithmic derivative of A224732 (when ignoring initial term a(0)=1).

a(n) ~ exp(-1/8) * 4^(n^2) / (n^(n/2) * Pi^(n/2)). - Vaclav Kotesovec, Mar 04 2014

EXAMPLE

L.g.f.: L(x) = 2*x + 36*x^2/2 + 8000*x^3/3 + 24010000*x^4/4 + 1016255020032*x^5/5 +...

Equivalently,

L(x) = 2*x + 6^2*x^2/2 + 20^3*x^3/3 + 70^4*x^4/4 + 252^5*x^5/5 + 924^6*x^6/6 + 3432^7*x^7/7 + 12870^8*x^8/8 +...+ A000984(n)^n*x^n/n +...

where exponentiation yields an integer series:

exp(L(x)) = 1 + 2*x + 20*x^2 + 2704*x^3 + 6008032*x^4 + 203263062688*x^5 + 103724721990326528*x^6 +...+ A224732(n)*x^n +...

MATHEMATICA

Table[Binomial[2n, n]^n, {n, 0, 10}] (* Harvey P. Dale, Apr 19 2016 *)

PROG

(PARI) {a(n)=binomial(2*n, n)^n}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A224732, A000984.

Sequence in context: A004003 A060739 A333209 * A264953 A308942 A134366

Adjacent sequences: A224730 A224731 A224732 * A224734 A224735 A224736

KEYWORD

nonn,nice

AUTHOR

Paul D. Hanna, Apr 16 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 4 03:47 EST 2023. Contains 360045 sequences. (Running on oeis4.)