login
A224694
Numbers n such that n^2 AND n = 0, where AND is the bitwise logical AND operator.
3
0, 2, 4, 8, 10, 12, 16, 18, 24, 26, 32, 34, 36, 40, 44, 48, 50, 56, 64, 66, 68, 76, 80, 90, 96, 98, 100, 108, 112, 128, 130, 132, 136, 138, 144, 146, 152, 160, 164, 168, 176, 184, 192, 194, 196, 208, 224, 228, 240, 256, 258, 260, 264, 266, 268, 280, 282, 288, 290, 296, 312
OFFSET
1,2
COMMENTS
Indices of zeros in A213541.
The sequence b(n) = a(n)/2 begins: 0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 38, 40, 45, 48, 49, 50, 54, 56, 64
LINKS
MAPLE
read("transforms") :
isA224694 := proc(n)
return( ANDnos(n^2, n) =0 ) ;
end proc:
A224694 := proc(n)
option remember;
if n = 1 then
0;
else
for a from procname(n-1)+1 do
if isA224694(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Apr 25 2013
MATHEMATICA
Select[Range[0, 350], BitAnd[#^2, #] == 0 &] (* Matthew House, Jul 14 2015 *)
PROG
(Python)
for i in range(333):
if ((i*i) & i)==0:
print str(i)+', ',
(Haskell)
import Data.List (elemIndices)
a224694 n = a224694_list !! (n-1)
a224694_list = elemIndices 0 a213541_list
-- Reinhard Zumkeller, Apr 25 2013
CROSSREFS
Cf. A213541.
Sequence in context: A097498 A346502 A321580 * A140900 A166936 A166245
KEYWORD
nonn,easy,base
AUTHOR
Alex Ratushnyak, Apr 15 2013
STATUS
approved