login
A224685
Number of (n+4) X 7 0..1 matrices with each 5 X 5 subblock idempotent.
1
2662, 1494, 1636, 1896, 2136, 2354, 2862, 3701, 4814, 6134, 7579, 9522, 12249, 16025, 21050, 27502, 35816, 46815, 61511, 81188, 107258, 141592, 186820, 246722, 326234, 431740, 571497, 756452, 1001216, 1325438, 1755075, 2324413, 3078635, 4077559
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-7) + a(n-8) -a(n-9) + a(n-10) + a(n-12) - a(n-13) for n>17.
Empirical g.f.: x*(2662 - 3830*x + 1310*x^2 - 2544*x^3 + 1148*x^4 - 164*x^5 + 30*x^6 + 2753*x^7 - 1112*x^8 + 2503*x^9 - 1622*x^10 - 233*x^11 - 2720*x^12 + 1520*x^13 + 221*x^14 + 61*x^15 + 5*x^16) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 - x^3)). - Colin Barker, Sep 02 2018
EXAMPLE
Some solutions for n=2:
..1..0..0..0..0..0..0....1..0..0..0..0..0..1....1..1..0..0..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..1..1..1..0..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..1..0..0..1..1..1....0..0..0..0..0..0..1....0..0..1..1..1..0..0
CROSSREFS
Column 3 of A224690.
Sequence in context: A235733 A235514 A197108 * A167191 A002482 A187293
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2013
STATUS
approved