%I #4 Apr 11 2013 08:49:50
%S 128620,26542,26294,28783,31062,32814,34107,35087,40536,50460,63767,
%T 79415,96623,114896,133880,158108,191982,238919,301266,380584,477886,
%U 593959,733990,907647,1127983,1410421,1771896,2230456,2804799,3518917
%N Number of (n+6)X11 0..1 matrices with each 7X7 subblock idempotent
%C Column 5 of A224588
%H R. H. Hardin, <a href="/A224585/b224585.txt">Table of n, a(n) for n = 1..136</a>
%F Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) -a(n-5) +a(n-6) +a(n-8) -a(n-9) -a(n-10) +a(n-12) +a(n-14) -a(n-15) for n>21
%e Some solutions for n=2
%e ..1..0..0..0..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0..0..1
%e ..1..0..0..0..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0..0..0
%e ..1..0..0..0..0..0..0..0..0..0..1....0..0..0..1..0..0..0..1..0..0..1
%e ..1..0..0..0..0..0..0..0..0..0..1....0..0..0..1..0..0..0..1..0..0..0
%e ..1..0..0..0..0..0..0..0..0..0..0....0..0..0..1..0..0..0..1..0..0..0
%e ..0..0..0..0..0..0..0..0..0..0..1....1..0..0..1..0..0..0..1..0..0..1
%e ..1..0..0..0..0..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0..0..1
%e ..1..0..0..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0..0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 11 2013