login
A224568
T(n,k)=Number of (n+3)X(k+3) 0..1 matrices with each 4X4 subblock idempotent
9
452, 370, 370, 512, 340, 512, 739, 428, 428, 739, 990, 517, 514, 517, 990, 1345, 611, 629, 629, 611, 1345, 1852, 775, 728, 752, 728, 775, 1852, 2659, 1044, 929, 861, 861, 929, 1044, 2659, 3846, 1383, 1232, 1091, 974, 1091, 1232, 1383, 3846, 5589, 1808
OFFSET
1,1
COMMENTS
Table starts
..452..370..512..739..990.1345.1852.2659.3846.5589..8064.11675.16954.24757
..370..340..428..517..611..775.1044.1383.1808.2373..3190..4323..5868..7946
..512..428..514..629..728..929.1232.1627.2095.2739..3658..4945..6670..9010
..739..517..629..752..861.1091.1433.1871.2390.3108..4136..5571..7493.10098
..990..611..728..861..974.1233.1614.2099.2665.3459..4600..6193..8316.11198
.1345..775..929.1091.1233.1550.1997.2558.3206.4115..5408..7202..9577.12793
.1852.1044.1232.1433.1614.1997.2526.3175.3917.4951..6416..8429.11076.14646
.2659.1383.1627.1871.2099.2558.3175.3918.4764.5935..7582..9826.12763.16709
.3846.1808.2095.2390.2665.3206.3917.4764.5716.7032..8871.11362.14599.18939
.5589.2373.2739.3108.3459.4115.4951.5935.7032.8536.10610.13395.16987.21782
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -2*a(n-5) +2*a(n-6) -2*a(n-7) +a(n-8) for n>10
k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-5) +a(n-6) -2*a(n-7) +2*a(n-8) +a(n-11) -a(n-12) for n>15
k=3: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +4*a(n-4) -3*a(n-5) +2*a(n-7) -a(n-8) for n>10
k=4: a(n) = 4*a(n-1) -7*a(n-2) +8*a(n-3) -6*a(n-4) +a(n-5) +3*a(n-6) -4*a(n-7) +3*a(n-8) -a(n-9) for n>11
k=5: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +4*a(n-4) -3*a(n-5) +2*a(n-7) -a(n-8) for n>10
k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-4) -5*a(n-5) +4*a(n-6) -a(n-7) -a(n-8) +2*a(n-9) -a(n-10) for n>12
k=7: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +4*a(n-4) -3*a(n-5) +2*a(n-7) -a(n-8) for n>10
k=8: a(n) = 4*a(n-1) -7*a(n-2) +8*a(n-3) -6*a(n-4) +a(n-5) +3*a(n-6) -4*a(n-7) +3*a(n-8) -a(n-9) for n>11
k=9: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +4*a(n-4) -3*a(n-5) +2*a(n-7) -a(n-8) for n>10
k=10: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-4) -5*a(n-5) +4*a(n-6) -a(n-7) -a(n-8) +2*a(n-9) -a(n-10) for n>12
k=11: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +4*a(n-4) -3*a(n-5) +2*a(n-7) -a(n-8) for n>10
k=12: a(n) = 4*a(n-1) -7*a(n-2) +8*a(n-3) -6*a(n-4) +a(n-5) +3*a(n-6) -4*a(n-7) +3*a(n-8) -a(n-9) for n>11
EXAMPLE
Some solutions for n=3 k=4
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....1..1..1..1..0..1..1
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..1....1..1..1..1..1..1..1
..0..0..0..0..0..1..1....1..0..0..0..0..0..1....0..0..0..0..0..0..0
CROSSREFS
Sequence in context: A066322 A128922 A224560 * A224561 A116308 A183636
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 10 2013
STATUS
approved