%I #15 Apr 12 2013 08:08:11
%S 5,2,29,41,9,2,71,30,32,6,35,11,6,50,2,20,9,120,56,21,9,75,90,51,51,
%T 29,107,9,74,155,116,11,29,86,116,35,200,12,11,39,9,105,51,422,36,65,
%U 6,32,27,44,9,41,14,116,266,41,29,5,50,95,27,71,69,330,21,194
%N Smallest k such that k*2*p(n)^2+1=q is prime and k*2*q^2+1 is also prime.
%H Pierre CAMI, <a href="/A224494/b224494.txt">Table of n, a(n) for n = 1..10000</a>
%t a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 + 1] && PrimeQ[k*2*q^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 66}] (* _Jean-François Alcover_, Apr 12 2013 *)
%Y Cf. A224489, A224490, A224491, A224492, A224493, A224495, A224496.
%K nonn
%O 1,1
%A _Pierre CAMI_, Apr 08 2013