login
A224483
Numbers which are the sum of two positive cubes and divisible by 29.
6
6119, 6293, 6641, 7163, 7859, 8729, 9773, 10991, 12383, 13949, 15689, 17603, 19691, 21953, 48778, 48952, 49474, 50344, 51562, 53128, 55042, 57304, 59914, 62872, 66178, 69832, 73834, 78184, 82882, 87928, 93322, 99064, 105154
OFFSET
1,1
COMMENTS
If 12*h-2523 is a square then some values of 29*h are in this sequence.
It is easy to verify that h is of the form 3*m^2-9*m+217, and therefore 29*(3*m^2-9*m+217) = (16-m)^3+(m+13)^3. [Bruno Berselli, May 10 2013]
LINKS
MATHEMATICA
upto[n_] := Block[{t}, Union@Reap[ Do[If[Mod[t = x^3 + y^3, 29] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[106000] (* Giovanni Resta, Jun 12 2020 *)
PROG
(Magma) [n: n in [2..2*10^5] | exists{i: i in [1..Iroot(n-1, 3)] | IsPower(n-i^3, 3) and IsZero(n mod 29)}]; // Bruno Berselli, May 10 2013
CROSSREFS
Cf. numbers which are the sum of two positive cubes and divisible by k: A101421 (k=7), A101852 (k=11), A094447 (k=13), A099178 (k=17), A102619 (k=19), A101806 (k=23), A102658 (k=31), A102618 (k=37).
Sequence in context: A345186 A251368 A366516 * A065695 A204368 A114131
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 08 2013
STATUS
approved