|
|
A224402
|
|
Composite numbers that become prime when their digits are put in nonincreasing order.
|
|
2
|
|
|
14, 16, 34, 35, 38, 112, 118, 119, 121, 124, 125, 128, 133, 134, 136, 142, 143, 145, 146, 152, 154, 164, 166, 175, 176, 182, 188, 194, 214, 215, 218, 314, 316, 334, 341, 343, 344, 346, 356, 358, 361, 364, 365, 368, 374, 377, 385, 386, 388, 395, 398, 412, 413
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Because any number ending in zero is composite, the sequence experiences gaps of at least order O(a(n))-1 between changes in the most significant digit.
|
|
LINKS
|
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
194=2*97, but 941 is prime.
|
|
MATHEMATICA
|
Select[Range[500], ! PrimeQ[#] && PrimeQ[FromDigits[Reverse[Sort[IntegerDigits[#]]]]] &] (* T. D. Noe, Apr 05 2013 *)
|
|
PROG
|
(R) j=1; y=c(); library(gmp)
while(length(y)<1000) {
if(isprime((j=j+1))==0) {
x=sort(as.numeric(strsplit(as.character(j), spl="")[[1]]), decr=T)
if(isprime(paste(x, collapse=""))>0) y=c(y, j)
}
}
|
|
CROSSREFS
|
Subset of A007935.
Cf. A068653, A076055, A224400.
Sequence in context: A228207 A175887 A305885 * A067844 A015877 A192290
Adjacent sequences: A224399 A224400 A224401 * A224403 A224404 A224405
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Christian N. K. Anderson and Kevin L. Schwartz, Apr 05 2013
|
|
STATUS
|
approved
|
|
|
|