login
A224395
Number of 6Xn 0..3 arrays with diagonals and antidiagonals unimodal and rows nondecreasing
1
4096, 1000000, 18794636, 152271025, 879830242, 4364554008, 19879000458, 84675848787, 337896379016, 1262027034092, 4414609771988, 14497401758306, 44849313719663, 131213360082438, 364483316826362, 964981060109623
OFFSET
1,1
COMMENTS
Row 6 of A224391
LINKS
FORMULA
Empirical: a(n) = (42587101/1600593426432000)*n^18 + (83940121/177843714048000)*n^17 + (351548291/31384184832000)*n^16 + (404522743/2615348736000)*n^15 + (2603179801/1426553856000)*n^14 + (13975516589/747242496000)*n^13 + (1018677008761/3621252096000)*n^12 - (71772294491/67060224000)*n^11 + (9590385658061/219469824000)*n^10 - (19294207174217/73156608000)*n^9 + (6061000683461531/2414168064000)*n^8 - (67636294337629/7185024000)*n^7 + (580563104944166119/11769069312000)*n^6 + (14843452118300317/653837184000)*n^5 - (42702408306785177/59439744000)*n^4 + (14422633437701933/3027024000)*n^3 - (272645035897423741/15437822400)*n^2 + (10375478018905/1225224)*n + 82732433 for n>10
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..2....0..0..2....0..0..2....0..0..0....0..0..2....0..0..2
..0..2..3....0..2..2....2..2..3....0..2..2....2..2..2....2..2..2....0..2..2
..0..3..3....0..2..3....0..2..3....2..2..2....0..2..2....2..2..3....0..2..3
..1..2..3....0..0..1....0..1..1....0..2..3....1..3..3....2..2..3....3..3..3
..1..3..3....0..0..2....0..2..3....0..0..1....0..1..1....0..0..1....0..2..2
CROSSREFS
Sequence in context: A321820 A236218 A016962 * A224028 A269206 A183816
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 05 2013
STATUS
approved