login
A224354
Number of 3 X n 0..2 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
1
27, 216, 788, 2321, 5840, 13052, 26610, 50423, 90012, 152912, 249120, 391589, 596768, 885188, 1282094, 1818123, 2530028, 3461448, 4663724, 6196761, 8129936, 10543052, 13527338, 17186495, 21637788, 27013184, 33460536, 41144813, 50249376
OFFSET
1,1
COMMENTS
Row 3 of A224353.
LINKS
FORMULA
Empirical: a(n) = (23/360)*n^6 + (19/40)*n^5 + (235/72)*n^4 + (61/8)*n^3 + (1921/180)*n^2 + (189/10)*n + 3 for n>1.
Conjectures from Colin Barker, Aug 29 2018: (Start)
G.f.: x*(27 + 27*x - 157*x^2 + 396*x^3 - 474*x^4 + 326*x^5 - 116*x^6 + 17*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....1..1..2....2..2..2....0..2..2....0..1..1....1..1..1....0..1..2
..1..1..2....1..1..2....2..2..2....1..1..1....1..1..2....1..1..2....1..1..1
..1..2..2....0..1..1....1..1..2....1..1..1....0..0..0....0..2..2....1..1..2
CROSSREFS
Cf. A224353.
Sequence in context: A224874 A125111 A016767 * A224013 A059827 A117688
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 04 2013
STATUS
approved