The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224326 Number of partitions of n into 3 distinct triangular numbers. 2
 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 1, 3, 2, 0, 2, 1, 1, 4, 1, 3, 1, 1, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 4, 1, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 4, 1, 2, 4, 2, 3, 3, 2, 1, 5, 2, 0, 5, 1, 4, 5, 2, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 COMMENTS Indices of zeros: 0 followed by A002243. LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Jon Maiga, Computer-generated formulas for A224326, Sequence Machine. MATHEMATICA nn = 150; tri = Table[n*(n + 1)/2, {n, 0, nn}]; t = Table[0, {tri[[-1]]}]; Do[s = tri[[i]] + tri[[j]] + tri[[k]]; If[s <= tri[[-1]], t[[s]]++], {i, nn}, {j, i + 1, nn}, {k, j + 1, nn}]; t = Join[{0}, t] (* T. D. Noe, Apr 05 2013 *) PROG (Python) TOP = 777 for n in range(TOP): k = 0 for x in range(TOP): s = x*(x+1)//2 if s>n: break for y in range(x+1, TOP): sy = s + y*(y+1)//2 if sy>n: break for z in range(y+1, TOP): sz = sy + z*(z+1)//2 if sz>n: break if sz==n: k+=1 print(str(k), end=', ') CROSSREFS Cf. A000217, A002243, A033761. Cf. A025436 (number of partitions of n into 3 distinct squares). Cf. A002636 (allows nondistinct triangular numbers). Sequence in context: A329257 A173266 A342149 * A096496 A117209 A035192 Adjacent sequences: A224323 A224324 A224325 * A224327 A224328 A224329 KEYWORD nonn AUTHOR Alex Ratushnyak, Apr 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 01:46 EST 2023. Contains 360024 sequences. (Running on oeis4.)