login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224326 Number of partitions of n into 3 distinct triangular numbers. 2
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 1, 3, 2, 0, 2, 1, 1, 4, 1, 3, 1, 1, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 4, 1, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 4, 1, 2, 4, 2, 3, 3, 2, 1, 5, 2, 0, 5, 1, 4, 5, 2, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,17

COMMENTS

Indices of zeros: 0 followed by A002243.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

MATHEMATICA

nn = 150; tri = Table[n*(n + 1)/2, {n, 0, nn}]; t = Table[0, {tri[[-1]]}]; Do[s = tri[[i]] + tri[[j]] + tri[[k]]; If[s <= tri[[-1]], t[[s]]++], {i, nn}, {j, i + 1, nn}, {k, j + 1, nn}]; t = Join[{0}, t] (* T. D. Noe, Apr 05 2013 *)

PROG

(Python)

TOP = 777

for n in xrange(TOP):

  k = 0

  for x in xrange(TOP):

    s = x*(x+1)/2

    if s>n: break

    for y in xrange(x+1, TOP):

        sy = s + y*(y+1)/2

        if sy>n: break

        for z in xrange(y+1, TOP):

          sz = sy + z*(z+1)/2

          if sz>n: break

          if sz==n: k+=1

  print str(k)+', ',

CROSSREFS

Cf. A000217, A002243.

Cf. A025436 (number of partitions of n into 3 distinct squares).

Cf. A002636 (allows nondistinct triangular numbers).

Sequence in context: A079066 A157188 A173266 * A096496 A117209 A035192

Adjacent sequences:  A224323 A224324 A224325 * A224327 A224328 A224329

KEYWORD

nonn

AUTHOR

Alex Ratushnyak, Apr 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 22:56 EDT 2019. Contains 323411 sequences. (Running on oeis4.)