login
A224144
Number of n X 6 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
22, 148, 554, 1573, 3827, 8375, 16885, 31841, 56783, 96579, 157729, 248701, 380299, 566063, 822701, 1170553, 1634087, 2242427, 3029913, 4036693, 5309347, 6901543, 8874725, 11298833, 14253055, 17826611, 22119569, 27243693, 33323323, 40496287
OFFSET
1,1
COMMENTS
Column 6 of A224146.
LINKS
FORMULA
Empirical: a(n) = (2/45)*n^6 + (4/15)*n^5 + (16/9)*n^4 + 6*n^3 + (683/45)*n^2 + (341/15)*n - 55 for n>3.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(22 - 6*x - 20*x^2 + 33*x^3 + 40*x^4 - 53*x^5 + 8*x^6 + 11*x^7 - 2*x^8 - x^9) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..0..0..0..0....0..0..0..1..0..0....0..0..0..1..0..0....1..0..0..0..0..0
..0..1..0..0..0..0....0..0..1..1..1..0....0..0..1..1..0..0....1..1..1..1..0..0
..0..1..1..0..0..0....0..0..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..0
CROSSREFS
Cf. A224146.
Sequence in context: A262139 A159505 A223836 * A225008 A240384 A245380
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved