login
A224134
Number of 3 X n 0..1 arrays with rows nondecreasing and antidiagonals unimodal.
1
8, 27, 58, 106, 175, 269, 392, 548, 741, 975, 1254, 1582, 1963, 2401, 2900, 3464, 4097, 4803, 5586, 6450, 7399, 8437, 9568, 10796, 12125, 13559, 15102, 16758, 18531, 20425, 22444, 24592, 26873, 29291, 31850, 34554, 37407, 40413, 43576, 46900, 50389, 54047
OFFSET
1,1
COMMENTS
Row 3 of A224133.
LINKS
FORMULA
Empirical: a(n) = (2/3)*n^3 + (5/2)*n^2 + (35/6)*n for n>1.
Conjectures from Colin Barker, Aug 27 2018: (Start)
G.f.: x*(8 - 5*x - 2*x^2 + 4*x^3 - x^4) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....0..0..0....0..1..1....0..0..0....0..0..0....0..0..1....1..1..1
..0..1..1....0..1..1....0..0..1....1..1..1....0..0..1....0..1..1....0..0..0
..1..1..1....0..0..0....0..0..0....0..1..1....1..1..1....1..1..1....0..0..0
CROSSREFS
Cf. A224133.
Sequence in context: A339897 A131620 A141227 * A213488 A151675 A211641
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved