login
A224106
Numerators of poly-Cauchy numbers of the second kind hat c_n^(4).
3
1, -1, 97, -1147, 3472243, -653983, 74118189437, -1058923294571, 777910456216513, -285577840060819, 23240203016832136201, -216925341603548096639, 1222007019804929270080450811
OFFSET
0,3
COMMENTS
The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
MATHEMATICA
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^4, {k, 0, n}]], {n, 0,
25}]
PROG
(PARI) a(n) = numerator(sum(k=0, n, (-1)^k*stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015
CROSSREFS
Cf. A002657, A223902, A224105, A114102, A224104, A224105 (denominators).
Sequence in context: A186075 A087596 A133836 * A038532 A226082 A092272
KEYWORD
sign,frac
AUTHOR
Takao Komatsu, Mar 31 2013
STATUS
approved