This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224104 Numerators of poly-Cauchy numbers of the second kind hat c_n^(3). 4
 1, -1, 35, -217, 135989, -236881, 435876493, -3174551347, 790667708347, -1473406853309, 11050163107919893, -20886680047664287, 9154917271574968829623, -277315386220087376401, 803143323197313772705 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the ﬁrst kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012) Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371. Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153. T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages. Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016 MATHEMATICA Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^3, {k, 0, n}]], {n, 0,   25}] PROG (PARI) a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^3)); \\ Michel Marcus, Nov 14 2015 CROSSREFS Cf. A002657, A223901, A224102, A224103 (denominators). Sequence in context: A064013 A240137 A020262 * A300523 A257758 A195968 Adjacent sequences:  A224101 A224102 A224103 * A224105 A224106 A224107 KEYWORD sign,frac AUTHOR Takao Komatsu, Mar 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)