login
A224099
Numerators of poly-Cauchy numbers c_n^(4).
3
1, 1, -65, 635, -1691507, 2602903, -30316306813, 405644259179, -281598937164737, 491752927006687, -38273845811539969069, 68624716189056755839, -372590717516807448774422779
OFFSET
0,3
COMMENTS
The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
MATHEMATICA
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
PROG
(PARI) a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015
CROSSREFS
Cf. A006232, A222748, A224095, A224097, A224098 (denominators).
Sequence in context: A338413 A211404 A297317 * A220229 A200890 A268265
KEYWORD
sign,frac
AUTHOR
Takao Komatsu, Mar 31 2013
STATUS
approved