login
A224095
Numerators of poly-Cauchy numbers c_n^(2).
5
1, 1, -5, 11, -1103, 1627, -374473, 1220651, -92146157, 31595747, -20000218625, 176776749931, -5607610511548471, 374753409522157, -55207553310144173, 202183428095237231, -1614396705602979083803
OFFSET
0,3
COMMENTS
The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).
LINKS
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
MATHEMATICA
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
PROG
(PARI) a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015
CROSSREFS
Cf. A006232, A222627, A224094 (denominators).
Sequence in context: A046957 A174957 A174955 * A370664 A130735 A322153
KEYWORD
sign,frac
AUTHOR
Takao Komatsu, Mar 31 2013
STATUS
approved