login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224095 Numerators of poly-Cauchy numbers c_n^(2). 5
1, 1, -5, 11, -1103, 1627, -374473, 1220651, -92146157, 31595747, -20000218625, 176776749931, -5607610511548471, 374753409522157, -55207553310144173, 202183428095237231, -1614396705602979083803 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)

Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.

Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.

T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.

Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016

MATHEMATICA

Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]

PROG

(PARI) a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015

CROSSREFS

Cf. A006232, A222627, A224094 (denominators).

Sequence in context: A046957 A174957 A174955 * A130735 A322153 A022835

Adjacent sequences: A224092 A224093 A224094 * A224096 A224097 A224098

KEYWORD

sign,frac

AUTHOR

Takao Komatsu, Mar 31 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 2 19:34 EST 2023. Contains 360024 sequences. (Running on oeis4.)