login
A224000
Number of 2 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1
9, 31, 76, 155, 281, 469, 736, 1101, 1585, 2211, 3004, 3991, 5201, 6665, 8416, 10489, 12921, 15751, 19020, 22771, 27049, 31901, 37376, 43525, 50401, 58059, 66556, 75951, 86305, 97681, 110144, 123761, 138601, 154735, 172236, 191179, 211641, 233701
OFFSET
1,1
COMMENTS
Row 2 of A223999.
LINKS
FORMULA
Empirical: a(n) = (1/12)*n^4 + 1*n^3 + (41/12)*n^2 + (7/2)*n + 1.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(9 - 14*x + 11*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..2....0..0..1....1..1..1....0..1..1....1..1..1....0..0..2....1..1..2
..0..0..2....2..2..2....0..1..2....0..1..2....0..1..1....2..2..2....0..2..2
CROSSREFS
Cf. A223999.
Sequence in context: A004126 A344675 A177342 * A373061 A118444 A321598
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 30 2013
STATUS
approved