login
A223914
Number of n X 4 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
46, 548, 3311, 14123, 48182, 139925, 359344, 837243, 1802306, 3633256, 6929795, 12606425, 22013660, 37091549, 60560840, 96157525, 148916916, 225513812, 334665727, 487606559, 698638490, 985770317, 1371450824, 1883406215
OFFSET
1,1
COMMENTS
Column 4 of A223918.
LINKS
FORMULA
Empirical: a(n) = (41/4032)*n^8 + (41/336)*n^7 + (1277/1440)*n^6 + (953/240)*n^5 + (5363/576)*n^4 + (35/2)*n^3 + (28211/1680)*n^2 - (223/140)*n - 7 for n>1.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(46 + 134*x + 35*x^2 + 188*x^3 + 35*x^4 - 157*x^5 + 241*x^6 - 153*x^7 + 47*x^8 - 6*x^9) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)
EXAMPLE
Some solutions for n=3:
..1..1..0..0....0..0..1..2....1..1..0..0....0..0..0..2....0..1..2..1
..1..2..2..0....0..1..1..2....1..1..2..0....0..0..2..2....0..1..2..1
..2..2..2..1....1..1..1..2....1..2..2..0....0..2..2..2....0..1..2..1
CROSSREFS
Cf. A223918.
Sequence in context: A232071 A156892 A224258 * A224186 A027940 A098227
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 29 2013
STATUS
approved