login
A223855
Decimal representation of continued fraction phi(1), phi(2), phi(3), phi(4), ...
4
1, 7, 1, 0, 1, 1, 3, 5, 2, 9, 7, 9, 9, 2, 5, 6, 4, 3, 3, 4, 9, 6, 6, 8, 2, 5, 7, 8, 9, 2, 7, 5, 7, 1, 4, 3, 7, 2, 4, 7, 0, 1, 1, 1, 0, 7, 8, 0, 0, 0, 6, 1, 5, 9, 6, 2, 0, 2, 6, 8, 3, 8, 7, 4, 6, 8, 4, 3, 5, 7, 2, 8, 9, 0, 8, 6, 1, 5, 0, 5, 3, 6, 2, 9, 3, 7, 4
OFFSET
1,2
LINKS
EXAMPLE
1.710113529799256433496682578927...
= [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, ...]
MAPLE
with(numtheory);
A223855:=proc(q) local a, n; a:=phi(q+1);
for n from q by -1 to 1 do a:=1/a+phi(n); od; print(evalf(a, 100)); end:
A223855(10^5);
MATHEMATICA
digits = 100; ContinuedFraction[Table[EulerPhi[n], {n, 1, digits}]] // Flatten // FromContinuedFraction // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 24 2014 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, Mar 28 2013
STATUS
approved