login
A223840
Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
5, 25, 89, 249, 596, 1286, 2578, 4886, 8851, 15439, 26072, 42800, 68523, 107273, 164567, 247843, 366992, 535000, 768715, 1089755, 1525574, 2110704, 2888192, 3911252, 5245153, 6969365, 9179986, 11992474, 15544709, 20000411, 25552941
OFFSET
1,1
COMMENTS
Row 4 of A223838.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (19/2880)*n^6 + (7/180)*n^5 + (527/5760)*n^4 + (3683/1440)*n^3 + (4051/10080)*n^2 - (1707/280)*n + 13 for n>2.
Conjectures from Colin Barker, Aug 24 2018: (Start)
G.f.: x*(5 - 20*x + 44*x^2 - 72*x^3 + 89*x^4 - 70*x^5 + 28*x^6 - 4*x^7 + 4*x^8 - 4*x^9 + x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0....0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....0..0..0
..0..0..0....0..1..0....1..0..0....1..1..1....0..0..0....0..0..1....0..1..0
..0..0..1....1..1..1....1..1..0....1..1..1....0..1..1....0..1..1....0..1..0
CROSSREFS
Cf. A223838.
Sequence in context: A147274 A147034 A146460 * A083090 A224148 A265929
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved