login
Numbers n whose deficiency is 20: sigma(n) - 2*n = -20.
7

%I #20 Sep 08 2022 08:46:04

%S 46,154,190,2656,6490,44650,318250,1360810,1503370,1788490,3214090,

%T 103712410,3915380170,6077111050,9796360330,10828121356,

%U 33086522327050,35966517350410,11577093570201610,16726040141635450,576460762503970816

%N Numbers n whose deficiency is 20: sigma(n) - 2*n = -20.

%C Suggested by _N. J. A. Sloane_ and _Robert G. Wilson v_.

%C a(17) > 10^12.

%C a(17) > 10^13. - _Giovanni Resta_, Mar 29 2013

%C a(22) > 10^18. - _Hiroaki Yamanouchi_, Aug 21 2018

%C Any term x of this sequence can be combined with any term y of A223611 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - _Timothy L. Tiffin_, Sep 13 2016

%e n = 1360810. sigma(n)-2*n = -20.

%t Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 20 &] (* _Vincenzo Librandi_, Sep 14 2016 *)

%o (PARI) for(n=1, 10^8, if(sigma(n)-2*n==-20, print1(n ", ")))

%o (Magma) [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -20]; // _Vincenzo Librandi_, Sep 14 2016

%Y Cf. A000203, A033879, A223611 (abundance 20).

%K nonn,more

%O 1,1

%A _Donovan Johnson_, Mar 23 2013

%E a(17)-a(21) from _Hiroaki Yamanouchi_, Aug 21 2018