login
A223601
Petersen graph (8,2) coloring a rectangular array: number of 3Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph
1
4096, 1376, 16192, 122608, 1124064, 9902320, 90390720, 827854448, 7658651360, 71165672752, 663933249024, 6209221918896, 58174002355232, 545677201489648, 5122736643803840, 48118345117470448, 452153378054341216
OFFSET
1,1
COMMENTS
Row 3 of A223599
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) +3*a(n-2) -437*a(n-3) +544*a(n-4) +3614*a(n-5) -6064*a(n-6) -6480*a(n-7) +14240*a(n-8) -416*a(n-9) -7296*a(n-10) +2304*a(n-11) for n>12
EXAMPLE
Some solutions for n=3
..7.15..9...10.12.14....5..6.14...12.14.12....6..7..0...13.15.13....7..0..8
.13.15.13...14.12.14....7..6..5...12..4.12...15..7..6...13.15..7....1..0..7
.13.11..9...14.12.14...14..6.14...12.14.12...15..7..6....7.15..9....1..0..7
CROSSREFS
Sequence in context: A182686 A369823 A176768 * A186490 A223694 A186489
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 23 2013
STATUS
approved