login
A223559
Petersen graph (3,1) coloring a rectangular array: number of 4Xn 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0
1
216, 2187, 61731, 1795473, 53599905, 1609602003, 48435199821, 1458216189189, 43906852932615, 1322067596579721, 39808646082180639, 1198675626234407289, 36093255426614169063, 1086802077561066049509, 32724639445955516294571
OFFSET
1,1
COMMENTS
Row 4 of A223556
LINKS
FORMULA
Empirical: a(n) = 48*a(n-1) -663*a(n-2) +4174*a(n-3) -13683*a(n-4) +22624*a(n-5) -11071*a(n-6) -19190*a(n-7) +27600*a(n-8) -3924*a(n-9) -10466*a(n-10) +4220*a(n-11) +556*a(n-12) -224*a(n-13) for n>16
EXAMPLE
Some solutions for n=3
..0..3..5....0..1..2....0..3..4....0..1..0....0..1..4....0..1..4....0..3..5
..5..3..0....4..1..2....0..1..2....4..1..4....4..5..2....4..1..4....5..2..5
..4..1..0....2..5..4....4..1..2....2..5..2....4..5..2....4..1..4....5..4..5
..2..1..4....4..5..4....2..5..2....2..0..3....3..0..2....4..1..0....1..2..5
CROSSREFS
Sequence in context: A323801 A222694 A243862 * A017055 A299859 A017139
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 22 2013
STATUS
approved