login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Petersen graph (3,1) coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1

%I #8 Aug 21 2018 05:54:54

%S 27,1089,44217,1795473,72906921,2960456193,120212193177,4881332621169,

%T 198211242377097,8048559615522273,326819564358379641,

%U 13270825184845208913,538874719548919491177,21881530298548175795649

%N Petersen graph (3,1) coloring a rectangular array: number of n X 4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.

%C Column 4 of A223556.

%H R. H. Hardin, <a href="/A223552/b223552.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 41*a(n-1) - 16*a(n-2).

%F Conjectures from _Colin Barker_, Aug 21 2018: (Start)

%F G.f.: 9*x*(3 - 2*x) / (1 - 41*x + 16*x^2).

%F a(n) = 3*sqrt(3/11)*2^(-4-n)*((41-7*sqrt(33))^n*(-1+sqrt(33)) + (1+sqrt(33))*(41+7*sqrt(33))^n).

%F (End)

%e Some solutions for n=3:

%e ..0..2..0..2....0..1..2..5....0..2..0..2....0..2..1..4....0..1..0..1

%e ..0..1..0..2....2..1..4..5....1..2..0..2....5..4..5..2....2..1..2..1

%e ..4..1..0..2....4..3..4..5....5..3..5..4....5..2..1..0....4..1..4..3

%Y Cf. A223556.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 22 2013