Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 14 2015 21:16:22
%S 1,1,6,7,84,36,91,1638,1404,216,1729,41496,53352,16416,1296,43225,
%T 1296750,2223000,1026000,162000,7776,1339975,48239100,103369500,
%U 63612000,15066000,1446336,46656,49579075,2082321150,5354540100,4118877000,1300698000,187300512
%N Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...
%H U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580.
%H U. N. Katugampola, <a href="http://arxiv.org/abs/1411.5229">Existence and Uniqueness results for a class of Generalized Fractional Differential Equations</a>, arXiv preprint arXiv:1411.5229, 2014
%e Triangle begins:
%e 1;
%e 1, 6;
%e 7, 84, 36;
%e 91, 1638, 1404, 216;
%e 1729, 41496, 53352, 16416, 1296;
%e 43225, 1296750, 2223000, 1026000, 162000, 7776;
%e 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
%e 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
%p a[0]:= f(x):
%p for i from 1 to 20 do
%p a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
%p end do:
%p for j from 1 to 10 do
%p b[j]:=a[2j];
%p end do;
%Y Even rows of A223172.
%Y Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522, A223168-A223172, A223523-A223532.
%K nonn,tabl
%O 1,3
%A _Udita Katugampola_, Mar 23 2013