login
A223526
Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...
0
1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
OFFSET
1,3
LINKS
FORMULA
T(n,0) = A007559(n) and T(n,n) = A000244(n) for all n>=0
EXAMPLE
Triangle begins:
1;
1, 3;
4, 24, 9;
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
58240, 1048320, 1965600, 1123200, 252720, 23328, 729;
1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187;
24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
MAPLE
a[0]:= f(x):
for i from 1 to 20 do
a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1], x$1 )));
end do:
for j from 1 to 10 do
b[j]:=a[2j];
end do;
CROSSREFS
Even row of A223169.
Sequence in context: A041861 A042377 A276815 * A032831 A047180 A051394
KEYWORD
nonn,tabl
AUTHOR
Udita Katugampola, Mar 18 2013
STATUS
approved