login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223519
Triangle T(n,k) represents the coefficients of (x^17*d/dx)^n, where n=1,2,3,...
0
1, 17, 1, 561, 51, 1, 27489, 3111, 102, 1, 1786785, 232815, 9945, 170, 1, 144729585, 20877615, 1058250, 24225, 255, 1, 14038769745, 2190735855, 125644365, 3480750, 49980, 357, 1, 1586380981185, 263782657215, 16639837830, 529411365, 9328410, 92106, 476, 1
OFFSET
1,2
COMMENTS
Generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
EXAMPLE
1;
17,1;
561,51,1;
27489,3111,102,1;
1786785,232815,9945,170,1;
144729585,20877615,1058250,24225,255,1;
14038769745,2190735855,125644365,3480750,49980,357,1;
1586380981185,263782657215,16639837830,529411365,9328410,92106,476,1;
MAPLE
b[0]:=f(x):
for j from 1 to 10 do
b[j]:=simplify(x^17*diff(b[j-1], x$1);
end do;
KEYWORD
nonn,easy,tabl
AUTHOR
Udita Katugampola, Mar 23 2013
STATUS
approved