%I #5 Mar 23 2013 14:53:40
%S 1,12,1,276,36,1,9384,1536,72,1,422280,80040,4920,120,1,23647680,
%T 4984560,365400,12000,180,1,1584394560,362597760,30197160,1205400,
%U 24780,252,1,123582775680,30229617600,2778370560,127834560,3237360,45696,336,1,1099867035520
%N Triangle T(n,k) represents the coefficients of (x^12*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
%e 1;
%e 12,1;
%e 276,36,1;
%e 9384,1536,72,1;
%e 422280,80040,4920,120,1;
%e 23647680,4984560,365400,12000,180,1;
%e 1584394560,362597760,30197160,1205400,24780,252,1;
%e 123582775680,30229617600,2778370560,127834560,3237360,45696,336,1;
%e 1099867035520,...
%p b[0]:=f(x):
%p for j from 1 to 10 do
%p b[j]:=simplify(x^12*diff(b[j-1],x$1);
%p end do;
%Y Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522, A223168-A223172, A223523-A223532.
%K nonn,easy,tabl
%O 1,2
%A _Udita Katugampola_, Mar 23 2013