login
A223489
a(n) = number of missing residues in the Lucas sequence mod the n-th prime number.
1
0, 0, 1, 0, 4, 1, 1, 7, 4, 19, 12, 9, 22, 10, 32, 9, 22, 33, 16, 27, 17, 30, 20, 65, 17, 66, 24, 74, 61, 73, 30, 49, 37, 106, 77, 114, 33, 40, 40, 49, 67, 119, 72, 49, 49, 183, 181, 54, 56, 149, 205, 90, 138, 94, 61, 178, 149, 102, 73, 254, 70, 81, 264, 117, 69
OFFSET
1,5
COMMENTS
The Lucas numbers mod n for any n are periodic - see A106291 for period lengths.
REFERENCES
V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
EXAMPLE
The 5th prime number is 11. The Lucas sequence mod 11 is {2,1,3,4,7,0,7,7,3,10,2,1,3,...} - a periodic sequence. There are 4 residues which do not occur in this sequence, namely {5,6,8,9}. So a(5) = 4.
MATHEMATICA
pisano[n_] := Module[{a = {2, 1}, a0, k = 0, s}, If[n == 1, 1, a0 = a; Reap[While[k++; s = Mod[Plus @@ a, n]; Sow[s]; a[[1]] = a[[2]]; a[[2]] = s; a != a0]][[2, 1]]]]; Join[{2}, Table[u = Union[pisano[n]]; mx = Max[u]; Length[Complement[Range[0, mx], u]], {n, Prime[Range[2, 100]]}]] (* T. D. Noe, Mar 22 2013 *)
CROSSREFS
Cf. A137751.
Sequence in context: A046550 A363975 A355777 * A016521 A146880 A152236
KEYWORD
nonn
AUTHOR
Casey Mongoven, Mar 20 2013
STATUS
approved