login
A223408
4 X 4 X 4 triangular graph without horizontal edges coloring a rectangular array: number of n X 1 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 3,6 3,7 4,7 4,8 5,8 5,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
10, 24, 66, 176, 486, 1312, 3622, 9792, 27030, 73088, 201750, 545536, 1505878, 4071936, 11240022, 30393344, 83896662, 226859008, 626213206, 1693298688, 4674118998, 12638953472, 34888099158, 94338433024, 260408317270
OFFSET
1,1
COMMENTS
Column 1 of A223415.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-2) - 12*a(n-4) + 4*a(n-6).
Empirical g.f.: 2*x*(5 + 12*x - 12*x^2 - 20*x^3 + 6*x^4 + 8*x^5) / ((1 - x)*(1 + x)*(1 + 2*x - 2*x^2)*(1 - 2*x - 2*x^2)). - Colin Barker, Aug 20 2018
EXAMPLE
Some solutions for n=3:
..1....7....4....4....8....2....5....4....1....2....4....4....3....4....1....6
..4....4....7....8....4....0....2....2....0....4....8....1....6....2....4....3
..1....8....3....5....7....1....4....0....1....8....4....0....3....5....2....1
CROSSREFS
Cf. A223415.
Sequence in context: A250798 A250576 A126911 * A261807 A135285 A235940
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 20 2013
STATUS
approved