login
A223291
4-loop graph coloring a rectangular array: number of n X 2 0..8 arrays where 0..8 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 0,5 5,6 6,0 0,7 7,8 8,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
24, 168, 1368, 11304, 93528, 773928, 6404184, 52994088, 438521688, 3628730664, 30027445848, 248474628648, 2056106982744, 17014115072808, 140790393758808, 1165028853392424, 9640517317978968, 79774482741456168, 660127240765231704
OFFSET
1,1
COMMENTS
Column 2 of A223297.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) - 6*a(n-2).
Conjectures from Colin Barker, Aug 19 2018: (Start)
G.f.: 24*x*(1 - 2*x) / (1 - 9*x + 6*x^2).
a(n) = (2^(2-n)*((9-sqrt(57))^n*(3+sqrt(57)) + (-3+sqrt(57))*(9+sqrt(57))^n)) / sqrt(57).
(End)
EXAMPLE
Some solutions for n=3:
..2..0....0..3....6..0....4..0....3..0....0..3....0..1....4..0....8..0....0..2
..0..1....3..0....0..3....0..4....0..5....6..0....8..0....0..6....0..3....2..0
..7..0....0..6....8..0....4..3....1..0....0..6....7..8....3..0....8..0....0..6
CROSSREFS
Cf. A223297.
Sequence in context: A244908 A087887 A288486 * A221069 A272125 A166756
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 19 2013
STATUS
approved