login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n is odd, and of 5^(n/2)*(x^(4/5)*d/dx)^n when n is even.
2

%I #28 Dec 25 2023 18:02:28

%S 1,1,5,6,5,6,60,25,66,110,25,66,990,825,125,1056,2640,1200,125,1056,

%T 21120,26400,8000,625,22176,73920,50400,10500,625,22176,554400,924000,

%U 420000,65625,3125,576576,2402400,2184000,682500,81250,3125,576576,17297280

%N Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n is odd, and of 5^(n/2)*(x^(4/5)*d/dx)^n when n is even.

%H U. N. Katugampola, <a href="http://authors.elsevier.com/a/1QhUNLvMg0Zs~">Mellin Transforms of Generalized Fractional Integrals and Derivatives</a>, Appl. Math. Comput. 257(2015) 566-580.

%H U. N. Katugampola, <a href="http://arxiv.org/abs/1411.5229">Existence and Uniqueness results for a class of Generalized Fractional Differential Equations</a>, arXiv preprint arXiv:1411.5229, 2014

%e Triangle begins:

%e 1;

%e 1, 5;

%e 6, 5;

%e 6, 60, 25;

%e 66, 110, 25;

%e 66, 990, 825, 125;

%e 1056, 2640, 1200, 125;

%e 1056, 21120, 26400, 8000, 625;

%e 22176, 73920, 50400, 10500, 625;

%e 22176, 554400, 924000, 420000, 65625, 3125;

%e 576576, 2402400, 2184000, 682500, 81250, 3125;

%e 576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625;

%e 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625;

%p a[0]:= f(x):

%p for i from 1 to 13 do

%p a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 )));

%p end do;

%Y Cf. A223168-A223172, A223523-A223532, A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522.

%K nonn,tabf

%O 0,3

%A _Udita Katugampola_, Mar 20 2013