login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223091 Numbers n such that sigma(n - 2) = sigma(n + 2). 4
53, 68, 117, 222, 321, 1005, 2587, 4026, 4185, 4197, 5722, 5828, 5961, 8006, 8376, 11661, 12369, 12563, 13583, 14340, 15367, 16118, 17842, 18720, 20543, 25132, 29395, 30172, 32667, 36518, 39915, 40662, 42425, 42924, 47843, 49764, 50040, 50437, 52314, 53220 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Corresponding values of sigma(n - 2) = sigma(n + 2): 72, 144, 144, 504, 360, 1080, 3456, 7560, 4320, 5040, 15120, 11664, ....  The first two values not divisible by 72 are for n = 21 and 23, a(n) = 15367 and 17842, sigma = 21120 and 41664.  A search up to a(n) = 10^8 did not turn up any sigma not divisible by 24. - Michael B. Porter, Mar 28 2013

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..1000

EXAMPLE

sigma(53 - 2) = sigma(53 + 2) = 72, sigma(68 - 2) = sigma(68 + 2) = 144, sigma(117 - 2) = sigma(117 + 2) = 144, sigma(222 - 2) = sigma(222 + 2) = 504, sigma(321 - 2) = sigma(321 + 2) = 360.

MAPLE

with(numtheory); A223091:=proc(q) local n;

for n from 2 to q do if sigma(n-2)=sigma(n+2) then print(n); fi; od;  end:

A223091(10^10); # Paolo P. Lava, Apr 04 2013

MATHEMATICA

Select[Range[10000], DivisorSigma[1, # - 2] == DivisorSigma[1, # + 2] &] (* Alonso del Arte, Mar 23 2013 *)

Flatten[Position[Partition[DivisorSigma[1, Range[55000]], 5, 1], _?(#[[1]] == #[[5]]&), {1}, Heads->False]]+2 (* Harvey P. Dale, Sep 14 2016 *)

PROG

(PARI) is(n)=sigma(n-2)==sigma(n+2) \\ Charles R Greathouse IV, Mar 17 2014

CROSSREFS

Cf. A067135, A175876.

Sequence in context: A034965 A160029 A229663 * A301479 A244187 A045807

Adjacent sequences:  A223088 A223089 A223090 * A223092 A223093 A223094

KEYWORD

nonn

AUTHOR

Irina Gerasimova, Mar 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 11:20 EDT 2019. Contains 323514 sequences. (Running on oeis4.)