

A223088


Trajectory of 82 under the map n> A006368(n).


15



82, 123, 92, 138, 207, 155, 116, 174, 261, 196, 294, 441, 331, 248, 372, 558, 837, 628, 942, 1413, 1060, 1590, 2385, 1789, 1342, 2013, 1510, 2265, 1699, 1274, 1911, 1433, 1075, 806, 1209, 907, 680, 1020, 1530, 2295, 1721, 1291, 968, 1452, 2178, 3267, 2450, 3675
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It is conjectured that this trajectory does not close on itself.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192198.


MAPLE

f:=n> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n1)/4; fi;
t1:=[82];
for n from 1 to 100 do t1:=[op(t1), f(t1[nops(t1)])]; od:
t1;


MATHEMATICA

t = {82}; While[n = t[[1]]; s = If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {82}, 100] // Flatten (* JeanFrançois Alcover, Mar 01 2019 *)


CROSSREFS

Cf. A006369, A006368, A182205.
Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083A223088, A185589, A185590.
Sequence in context: A223085 A260761 A037159 * A039547 A029704 A260835
Adjacent sequences: A223085 A223086 A223087 * A223089 A223090 A223091


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Mar 22 2013


STATUS

approved



