%I #6 Mar 13 2013 11:19:56
%S 3,5,7,11,13,17,19,23,29,31,37,47,53,59,61,67,71,73,79,83,89,97,101,
%T 107,113,127,131,137,139,149,163,167,173,179,181,193,197,199,211,223,
%U 227,233,239,241,257,263,269,281,293,317,347,349,353,359,373,379,383
%N Primes p whose smallest positive quadratic nonresidue is a primitive root of p.
%C See the complementary sequence A222717 for comments.
%H <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%e The smallest positive quadratic nonresidue of 3 is 2, and 2 is a primitive root of 3, so 3 is a member.
%t nn = 100; NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, nn}]); Select[ Prime[ Range[nn]], MultiplicativeOrder[ NR[[PrimePi[#]]], #] == # - 1 &]
%Y Cf. A001918, A053760, A222717.
%K nonn
%O 1,1
%A _Jonathan Sondow_, Mar 13 2013