This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223023 Poly-Cauchy numbers c_n^(-5). 4

%I

%S 1,32,211,359,-538,984,-1866,1110,32640,-449760,5035200,-55896960,

%T 646005600,-7896549120,102604234080,-1418189492640,20828546505600,

%U -324419255412480,5346952977432960,-93035974518691200,1705088403923592960,-32842738382065931520

%N Poly-Cauchy numbers c_n^(-5).

%C Definition of poly-Cauchy numbers in A222627.

%H Vincenzo Librandi, <a href="/A223023/b223023.txt">Table of n, a(n) for n = 0..300</a>

%H Takao Komatsu, <a href="http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1806-06.pdf">Poly-Cauchy numbers</a>, RIMS Kokyuroku 1806 (2012)

%H Takao Komatsu, <a href="http://link.springer.com/article/10.1007/s11139-012-9452-0">Poly-Cauchy numbers with a q parameter</a>, Ramanujan J. 31 (2013), 353-371.

%H Takao Komatsu, <a href="http://doi.org/10.2206/kyushujm.67.143">Poly-Cauchy numbers</a>, Kyushu J. Math. 67 (2013), 143-153.

%H M. Z. Spivey,<a href="http://dx.doi.org/10.1016/j.disc.2007.03.052">Combinatorial sums and finite differences</a>, Discr. Math. 307 (24) (2007) 3130-3146

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Stirling_transform">Stirling transform</a>

%F a(n) = sum(stirling1(n,k)*(k+1)^5, k=0..n).

%t Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]

%o (MAGMA) [&+[StirlingFirst(n,k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // _Bruno Berselli_, Mar 28 2013

%o (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ _Michel Marcus_, Nov 14 2015

%K sign

%O 0,2

%A _Takao Komatsu_, Mar 28 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 08:15 EDT 2019. Contains 321469 sequences. (Running on oeis4.)