login
A222964
Numbers k such that 25*k+36 is a square.
1
0, 13, 37, 76, 124, 189, 261, 352, 448, 565, 685, 828, 972, 1141, 1309, 1504, 1696, 1917, 2133, 2380, 2620, 2893, 3157, 3456, 3744, 4069, 4381, 4732, 5068, 5445, 5805, 6208, 6592, 7021, 7429, 7884, 8316, 8797, 9253, 9760, 10240, 10773, 11277, 11836, 12364, 12949, 13501, 14112, 14688
OFFSET
1,2
COMMENTS
Also, numbers of the form 25m^2+12*m, where m = 0,-1,1,-2,2,-3,3,... - Bruno Berselli, Apr 07 2013
FORMULA
G.f.: x^2*(13+24*x+13*x^2)/((1+x)^2*(1-x)^3).
a(n) = (50*n*(n-1)+(2*n-1)*(-1)^n+1)/8.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
Sum_{n>=2} 1/a(n) = 25/144 - tan(Pi/50)*Pi/12. - Amiram Eldar, Feb 16 2023
MATHEMATICA
Select[Range[0, 10000], IntegerQ[Sqrt[25 # + 36]]&] (* or *) CoefficientList[Series[x (13 + 24 x + 13 x^2)/((1+x)^2(1-x)^3), {x, 0, 40}], x]
PROG
(Magma) [n: n in [0..15000] | IsSquare(25*n+36)]; /* or */ I:=[0, 13, 37, 76, 124]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]];
(Magma) [0] cat [25*m^2+12*m where m is n*t: t in [-1, 1], n in [1..20]]; // Bruno Berselli, Apr 07 2013
CROSSREFS
Cf. numbers n such that k^2*n+(k+1)^2 is a square: A028552 (k=2), A218864 (k=3), A165717 (k=4).
Cf. numbers of the form k^2*m^2+floor(k^2/2)*m, where m=0,-1,1,-2,2,-3,3,...: A002378 (k=2), A185039 (k=3), A033996 (k=4), this sequence (k=5), A163758 (k=6).
Sequence in context: A155265 A155253 A155234 * A296312 A089114 A163675
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 07 2013
STATUS
approved