login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222813 Numbers whose binary representation is palindromic and in which all runs of 0's and 1's have length at least 2. 3
3, 7, 15, 31, 51, 63, 99, 127, 195, 231, 255, 387, 455, 511, 771, 819, 903, 975, 1023, 1539, 1651, 1799, 1935, 2047, 3075, 3171, 3315, 3591, 3687, 3855, 3999, 4095, 6147, 6371, 6643, 7175, 7399, 7695, 7967, 8191, 12291, 12483, 12771, 13107, 13299, 14343, 14535, 14823, 15375, 15567, 15903, 16191, 16383, 24579 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These are the decimal representations of A061851 read as base-2 numbers.

The terms with an odd number L = 2k-1 of bits, i.e., 2^(L-1) < a(n) < 2^L, are given by the terms of A033015 with length k, shifted k-1 digts to the left and 'OR'ed with the binary reversal of the term. Terms with an even number L = 2k of digits are given as m*2^k + (binary reversal of m) where m runs over the k-bit terms from A033015 and the k-1 bit terms with the last bit negated appended). This explains the FORMULA for the number of terms of given size. - M. F. Hasler, Oct 17 2022

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000 (first 608 terms from N. J. A. Sloane)

FORMULA

From M. F. Hasler, Oct 06 2022: (Start)

Intersection of A006995 and A033015: binary palindromes with no isolated digit.

There are A000045(A004526(k)) = Fibonacci(floor(k/2)) terms between 2^(k-1) and 2^k.

a(n) = A028897(A061851(n)), where A028897 = convert binary to decimal. (End)

EXAMPLE

51 (base 10) = 110011 (base 2), which is a palindrome and has three runs all of length 2.

MATHEMATICA

brpalQ[n_]:=Module[{idn2=IntegerDigits[n, 2]}, idn2==Reverse[idn2] && Min[ Length/@ Split[idn2]]>1]; Select[Range[25000], brpalQ] (* Harvey P. Dale, May 21 2014 *)

PROG

(PARI) is(n)=is_A033015(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Oct 06 2022

(PARI) {A222813_row(n, s=A033015_row(n\/2))=apply(A030101, if(n%2, s\2, n>2, s=setunion([k*2+1-k%2|k<-A033015_row(n\2-1)], s), s=[1]))+s<<(n\2)} \\ Terms with n bits, i.e. between 2^(n-1) and 2^n. - M. F. Hasler, Oct 17 2022

CROSSREFS

Cf. A061851.

Cf. A006995 (binary palindromes), A033015 (no isolated binary digit), A028897 ("rebase" 10 -> 2).

Sequence in context: A043729 A331503 A137170 * A304078 A151338 A229006

Adjacent sequences: A222810 A222811 A222812 * A222814 A222815 A222816

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Mar 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 31 18:34 EST 2023. Contains 359980 sequences. (Running on oeis4.)