login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222730 Total sum T(n,k) of parts <= n of multiplicity k in all partitions of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 12
0, 0, 1, 3, 2, 1, 11, 6, 0, 1, 36, 10, 3, 0, 1, 79, 21, 3, 1, 0, 1, 186, 33, 7, 3, 1, 0, 1, 345, 59, 9, 4, 1, 1, 0, 1, 672, 89, 20, 4, 4, 1, 1, 0, 1, 1163, 145, 22, 11, 4, 2, 1, 1, 0, 1, 2026, 212, 44, 13, 6, 4, 2, 1, 1, 0, 1, 3273, 325, 56, 21, 8, 6, 2, 2, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For k > 0, column k is asymptotic to sqrt(3) * (2*k+1) * exp(Pi*sqrt(2*n/3)) / (2 * k^2 * (k+1)^2 * Pi^2) ~ 6 * (2*k+1) * n * p(n) / (k^2 * (k+1)^2 * Pi^2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, May 29 2018

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

Sum_{k=0..n} k*T(n,k) = A066186(n) = n*A000041(n).

Sum_{k=1..n} T(n,k) = A014153(n-1) for n>0.

Sum_{k=0..n} T(n,k) = n*(n+1)/2*A000041(n) = A000217(n)*A000041(n).

(2 * Sum_{k=0..n} T(n,k)) / (Sum_{k=0..n} k*T(n,k)) = n+1 for n>0.

T(2*n+1,n+1) = A002865(n).

EXAMPLE

The partitions of n=4 are [1,1,1,1], [2,1,1], [2,2], [3,1], [4].  Parts <= 4 with multiplicity m=0 sum up to (2+3+4)+(3+4)+(1+3+4)+(2+4)+(1+2+3) = 36, for m=1 the sum is 2+(3+1)+4 = 10, for m=2 the sum is 1+2 = 3, for m=3 the sum is 0, for m=4 the sum is 1 => row 4 = [36, 10, 3, 0, 1].

Triangle T(n,k) begins:

    0;

    0,  1;

    3,  2,  1;

   11,  6,  0, 1;

   36, 10,  3, 0, 1;

   79, 21,  3, 1, 0, 1;

  186, 33,  7, 3, 1, 0, 1;

  345, 59,  9, 4, 1, 1, 0, 1;

  672, 89, 20, 4, 4, 1, 1, 0, 1;

MAPLE

b:= proc(n, p) option remember; `if`(n=0 and p=0, [1, 0],

      `if`(p=0, [0$(n+2)], add((l-> subsop(m+2=p*l[1]+l[m+2], l))

          ([b(n-p*m, p-1)[], 0$(p*m)]), m=0..n/p)))

    end:

T:= n-> subsop(1=NULL, b(n, n))[]:

seq(T(n), n=0..14);

MATHEMATICA

b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n - p*m, p-1] , Array[0&, p*m]]], {m, 0, n/p}]]]; Rest /@ Table[b[n, n], {n, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Dec 16 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A213679, A103628, A117525, A222731, A222732, A222733, A222734, A222735, A222736, A222737, A222738.

Cf. A000041, A000217, A002865, A014153, A066186.

Sequence in context: A309951 A077756 A115080 * A104219 A123513 A117442

Adjacent sequences:  A222727 A222728 A222729 * A222731 A222732 A222733

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 23:19 EST 2020. Contains 332353 sequences. (Running on oeis4.)