This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222592 Least integer that is a sum of 2*k, (k = 1..n) consecutive primes. 1
 5, 36, 8412, 227304, 39851304, 1622295444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The initial primes of the 6 tuples corresponding to a(6) are 811147721, 405573827, 270382529, 202786813, 162229471 and 135191207. - Giovanni Resta, Feb 26 2013 LINKS EXAMPLE a(1) = 5 = 2+3; a(2) = 36 = 17+19 = 5+7+11+13; a(3) = 8412 = 4201 + 4211 =   2089 + 2099 + 2111 + 2113 =   1373 + 1381 + 1399 + 1409 + 1423 + 1427; a(4) = 227304 = 113647 + 113657 =   56813 +  56821 + 56827 + 56843 =   37861 + 37871 + 37879 + 37889 + 37897 + 37907 =   28387 + 28393 + 28403 + 28409 +   28411 + 28429 + 28433 + 28439; a(5) = 39851304 = 19925627 + 19925677 =   9962809 + 9962819 + 9962837 + 9962839 =   6641839 + 6641851 + 6641867 + 6641891 + 6641903 + 6641953 =   4981367 + 4981373 + 4981387 + 4981393 +   4981423 + 4981441 + 4981451 + 4981469 =   3985063 + 3985067 + 3985073 + 3985087 + 3985099 +   3985103 + 3985181 + 3985207 + 3985211 + 3985213. MATHEMATICA a[n_] := Block[{t, w}, t = Table[{Total@(w = Prime@Range@(2*i)), w}, {i, n}]; While[Length@Union[First /@ t] > 1, t = Sort@t; w = NextPrime@t[[1, 2, -1]]; t[[1, 1]] += w - t[[1, 2, 1]]; t[[1, 2]] = Append[Rest@t[[1, 2]], w]]; t[[1, 1]]]; Array[a, 4] (* Giovanni Resta, Feb 26 2013 *) CROSSREFS Sequence in context: A318424 A156355 A002666 * A174507 A119483 A157809 Adjacent sequences:  A222589 A222590 A222591 * A222593 A222594 A222595 KEYWORD nonn,more AUTHOR Zak Seidov, Feb 26 2013 EXTENSIONS a(6) from Giovanni Resta, Feb 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 04:50 EDT 2019. Contains 323539 sequences. (Running on oeis4.)