login
Fibonacci-Legendre quotients: (Fibonacci(p) - L(p/5)) / p, where p = prime(n) and L(p/5) is the Legendre symbol.
3

%I #17 Nov 02 2024 03:21:56

%S 1,1,1,2,8,18,94,220,1246,17732,43428,652914,4038540,10081266,

%T 63217342,1005967758,16215627560,41061160360,670829406162,

%U 4338894664368,11048157986978,183194101578180,1195118711985006,19999768719154092,862073644225241474,5674731128849674100,14568160545698020226,96118885585174929102,247025215671874138312,1633201998168434481118

%N Fibonacci-Legendre quotients: (Fibonacci(p) - L(p/5)) / p, where p = prime(n) and L(p/5) is the Legendre symbol.

%C Fibonacci(p) == L(p/5) mod p, where the Legendre symbol L(p/5) equals 0, +1, -1 according as p = 5, 5*k+-1, 5*k+-2 for some k.

%C Not to be confused with Fibonacci(p - L(p,5)) / p, which is A092330.

%H Vincenzo Librandi, <a href="/A222361/b222361.txt">Table of n, a(n) for n = 1..200</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fibonacci_number#Prime_divisors_of_Fibonacci_numbers">Prime divisors of Fibonacci numbers</a>

%F For n>=4, a(n) = (Fibonacci(prime(n)) +/- 1)/prime(n), where '+' is chosen if prime(n)== 2 or 3 (mod 5), '-' is chosen otherwise. For n>=2, a(n) = round(Fibonacci(prime(n))/prime(n)). - _Vladimir Shevelev_, Mar 12 2014

%e Prime(4) = 7, so a(4) = (Fibonacci(7)-L(7/5))/7 = (13-(-1))/7 = 14/7 = 2.

%t Table[p = Prime[n]; (Fibonacci[p] - JacobiSymbol[p, 5])/p, {n, 1, 30}]

%Y Cf. A000045, A092330.

%K nonn

%O 1,4

%A _Jonathan Sondow_, Feb 23 2013