%I
%S 3,10,8,35,33,21,126,124,108,55,462,460,440,352,144,1716,1714,1690,
%T 1560,1145,377,6435,6433,6405,6225,5525,3721,987,24310,24308,24276,
%U 24038,22950,19551,12087,2584,92378,92376,92340,92036,90440,84626,69142,39254
%N T(n,k)=Number of length (n+k)X1 arrays of occupancy after each element moves up to +k places including 0
%C Table starts
%C .....3.....10.....35.....126.....462....1716....6435...24310...92378..352716
%C .....8.....33....124.....460....1714....6433...24308...92376..352714.1352076
%C ....21....108....440....1690....6405...24276...92340..352674.1352032
%C ....55....352...1560....6225...24038...92036..352296.1351572
%C ...144...1145...5525...22950...90440..350056.1348536
%C ...377...3721..19551...84626..340746.1334368
%C ...987..12087..69142..312019.1284780
%C ..2584..39254.244419.1150208
%C ..6765.127469.863788
%C .17711.413908
%C .46368
%H R. H. Hardin, <a href="/A222345/b222345.txt">Table of n, a(n) for n = 1..66</a>
%e Some solutions for n=3 k=4
%e ..0....0....2....0....0....1....0....0....0....0....2....1....0....1....2....0
%e ..1....1....1....2....1....1....0....0....1....3....0....1....0....0....0....3
%e ..3....2....0....1....1....1....4....7....0....1....0....0....1....3....0....2
%e ..0....1....1....0....4....0....0....0....2....0....1....0....0....0....1....0
%e ..0....0....3....0....1....2....0....0....0....1....0....1....6....0....4....1
%e ..0....3....0....4....0....0....0....0....2....0....3....4....0....1....0....0
%e ..3....0....0....0....0....2....3....0....2....2....1....0....0....2....0....1
%Y Column 1 is A001906(n+1)
%Y Column 2 is A060557(n+1)
%Y Column 3 is A094855(n+2)
%Y Row 1 is A001700
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Feb 16 2013
